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A B S T R A C T

Semiconducting Cu2FeSnS4 (CFTS) thin films were spray-deposited with different thiourea contents in the
precursor solution. The influence of thiourea contents (10–14ml) in the precursor solution on the crystal-
lographic, morphological, compositional, optical, electrical and thermoelectrical properties of CFTS films was
studied. X-ray diffraction analysis confirmed stannite phase having tetragonal crystal structure. The surface of
CFTS thin films had hexagonal crystals. Nearly stoichiometric deposition has been witnessed through energy
dispersive X-ray spectroscopy. Optical bandgap was found to be in the range 1.54–1.76 eV based on the different
thiourea contents in the precursor solution. The considerable reduction in electrical resistivity has been observed
for TH13 sample. The CFTS thin films are p-type as confirmed from thermoelectrical analysis.

1. Introduction

The increasing energy demand for the sustainable development and
limited access to the energy sources, has forced us to look for the re-
newable energy sources [1]. Solar is the most economical, effective and
inexhaustible source amongst the available energy resources [2]. One of
the most auspicious alternatives to the world's energy crisis is to convert
sun radiation into electrical energy [3,4]. A best and standard approach
of conversion is the direct production of electric current from captured
sunlight using solar photovoltaic cells [5,6].
There is a growing curiosity in transition metal chalcogenide thin

films for solar cell applications because of their unique physical and
chemical properties [7]. Copper indium gallium selenide (CIGS) and
cadmium telluride (CdTe) thin films are favourable as absorbent layers
[8,9]. The CIGS based solar cell had shown an efficiency of 22.6%,
however toxic selenium and expensive indium and gallium limits the
development of solar cells [10,11]. However due to non-toxic con-
stituents and earth abundance stannite Cu2FeSnS4 (CFTS) is promising
photovoltaic material. CFTS have proper optical bandgap
(1.20–1.54 eV) and high ( ̴ 104 cm−1) absorption coefficient [12–16].
Zhang et al. [12] have synthesized CFTS nanocrystals with tunable

bandgap of 1.46–1.54 eV. Yan and colleagues [13] have prepared tet-
ragonal CFTS nanocrystals by a simple hot-injection method. Using the
solvothermal method, Jiang and co-workers [14] have synthesized
CFTS particles as absorber layer. Boutebakh et al. [17] have studied the
effect of Zn molarity on the properties of p-type Cu2ZnSnS4 films. Agasti

and colleagues [18] have discussed the understanding Cu–Zn–Sn
through electrodeposition.
In recent times, numerous physical and chemical techniques are

employed for preparing CFTS including sputtering [19], solution
growth [12], hot injection [13], solvothermal [14,20], spin coating
[21], microwave [22], solid state reactions [23] and spray pyrolysis
[24,25]. However most of the techniques used for preparing CFTS are
time consuming and complex. The selection of the particular technique
depends on different factors including precursors to be used, the type of
the substrate, area of the films, application and structure of the film
[25]. Amongst these, spray pyrolysis is most popular, eco-friendly, less
expensive, non-vacuum with easy control over deposition rate, operates
at moderate temperatures, and can be engaged for large area deposition
[24,25].
Even though literature emphasise on growth and characterization of

CFTS thin films using spray pyrolysis, the effects of thiourea contents in
the precursor solution on the properties of spray deposited CFTS thin
films have not been reported yet. Previously, CFTS thin films have been
spray deposited at different deposition temperatures (175°C–325 °C). It
is observed the CFTS film have a band gap of 1.54 eV. The room tem-
perature resistivity is found to be 0.646×105 Ωcm [26]. By con-
sidering our goal to use these films for solar cell applications, we have
decided to vary the thiourea contents in the precursor solution to en-
hance the CFTS film properties.

https://doi.org/10.1016/j.physb.2019.06.009
Received 14 April 2019; Received in revised form 4 June 2019; Accepted 5 June 2019

∗ Corresponding author.
E-mail address: aay_physics@yahoo.co.in (A.A. Yadav).

Physica B: Condensed Matter 570 (2019) 73–81

Available online 06 June 2019
0921-4526/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09214526
https://www.elsevier.com/locate/physb
https://doi.org/10.1016/j.physb.2019.06.009
https://doi.org/10.1016/j.physb.2019.06.009
mailto:aay_physics@yahoo.co.in
https://doi.org/10.1016/j.physb.2019.06.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physb.2019.06.009&domain=pdf


2. Experimental

The precursor solution was obtained by mixing copper nitrate
(0.025M), ferrous sulphate (0.025M), stannic chloride (0.025M) and
thiourea (0.025M) solutions. For first set of experiment, the final spraying
solution was obtained by mixing 10ml of Cu, Fe and Sn with 10ml of S to
obtain the Cu:Fe:Sn:S ratio as 2:1:1:4. For second set of experiment (TH11
sample), the final spraying solution was obtained by mixing 10ml of Cu, Fe
and Sn with 11ml of S. Similarly for third set of experiment (TH12 sample),
the final spraying solution was obtained by mixing 10ml of Cu, Fe and Sn
with 12ml of S. In this fashion the CFTS films were deposited by varying
the thiourea contents in the precursor solution at the interval of 1ml from
10ml to 14ml to produce TH10, TH11, TH12, TH13 and TH14 samples of
CFTS thin films, respectively. The films are deposited at optimized tem-
perature of 250 °C. Spray rate was 3mlmin−1. The nozzle to substrate
distance was 30 cm. Air was used as carrier gas at pressure of 1.8 kgcm−2.
The film thicknesses of CFTS were determined through gravimetric

weight difference method. The crystallographic parameters were ob-
tained via X-ray diffraction (XRD) pattern recorded using Philips PW-
3710 X-ray diffractometer with Cu-kα radiation (λ=1.54056Å).
Surface morphological and compositional investigation was performed
with JEOL-JSM-6360A analytical scanning electron microscope (SEM).
The optical absorption spectra of CFTS thin films were obtained in the
450–1050 nm wavelength range using UV–Vis spectrophotometer
(SHIMADZU UV-1700), and further used to determine the bandgap
energy and type of transition involved. The D.C. two point probe
method is used for resistivity and thermo electrical measurements.

3. Results and discussion

When precursor solution containing copper nitrate, ferrous sul-
phate, stannic chloride and thiourea was sprayed, a pyrolytic decom-
position of precursor solution and formation of well-adherent CFTS thin
films happened. The colour of TH10 was grey, with augmentation of
thiourea contents in the precursor solution the colour of film became
dark grey as seen from Fig. 1. The possible reaction mechanism for
deposition of CFTS thin films can be written as follows:

Cu NO H O FeSO H O SnCl H O CH N S

Cu FeSnS NO
CO SO NH Cl NH H O O

2 ( ) 3 7 5 4

4
4 4 4 12 2

3 2 2 4 2 4 2 4 2

2 4 2

2 2 4 3 2 2

+ + +

+
+ + + + + (1)

Similar type of reaction has been presented by Patil et al. [27] for
CZTS thin films. The film thicknesses of TH10, TH11, TH12, TH13, and
TH14 estimated from gravimetric weight difference method were found
to be 340 ± 20 nm.

3.1. Structural studies

XRD patterns of CFTS thin films spray deposited at 250 °C with
various thiourea contents in the precursor solution are shown in Fig. 2.
The polycrystalline crystal structure of the CFTS thin film is witnessed
from XRD patterns. The diffraction peaks (112), (200), (004), (204),
and (312) are detected at 2θ angles 28.25°, 32.85°, 33.37°, 47.51° and
55.99° respectively. These findings are in decent agreement with lit-
erature [28]. From JCPDS data card No. 44–1476, the matching of
observed and standard ‘d’ values approve stannite phase of CFTS with
tetragonal crystal structure (space group I- 42m). Similar type of crystal
structure has been reported by Miao and colleagues [29] for electro-
chemically deposited CFTS films and Chatterjee et al. [30] for SILAR
prepared CFTS thin films, and Wang and colleagues [31] for Rb in-
corporated CFTS thin films synthesized by blade-coating method. The
broad humps observed in Fig. 2 for TH10 and TH13 are due to the
amorphous nature of the glass substrates. Moreover, as seen from the
figure, with augmentation of thiourea contents in the precursor solu-
tion, the (204) diffraction peak became comparatively intense and
sharper, due to improved crystallinity up to TH13, whereas the width of
the (204) diffraction peak decreased. Above TH13, increase in thiourea

Fig. 1. Photograph of CFTS thin films spray deposited on glass with various thiourea contents in the precursor solution.

Fig. 2. XRD patterns of CFTS thin films spray deposited at 250 °C with various
thiourea contents in the precursor solution.
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contents in the precursor solution resulted in decrease in peak intensity
which may be attributed to change in molecular plane for TH14 relative
to the substrate plane. The lattice parameters ‘a’ and ‘c’ are calculated
using standard relation [32]. The average lattice parameters are found
to be a=b=5.58 Å and c=10.58 Å respectively, matching with
standard JCPDS data (a= b=5.54 Å and c=10.73 Å).
Crystalline size (D) was estimated using Debye Scherrer's formula

[33]. Table 1 show crystalline sizes, it is observed that the crystalline
size upsurges from 18 nm for TH10 with increase in thiourea contents in
the precursor solution, reaches maximum to 35 nm for TH13 and de-
creases thereafter to 30 nm for TH14. The initial rise in crystalline size
with increase in thiourea contents in the precursor solution up to TH13
is due to increase in adsorption sites up to TH13. Jiang and colleagues
[14] have reported that a large crystalline size results in to increased
carrier diffusion length and reduced carrier recombination at grain

boundaries. Such thiourea concentration dependent crystalline size
variation is also studied by Padmavathy et al. [34] for chemically de-
posited ZnS films and Youssef et al. [35] for zinc deposits. Above TH13,
crystalline size decreases due to saturation of adsorption sites at the
substrate surface [36].
The influence of thiourea contents in the precursor solution on or-

ientation of polycrystalline CFTS films was examined by computing the
texture coefficients Tc(hkl) [37]. Fig. 3 shows variation of crystalline
size and texture coefficients Tc(204) with thiourea contents in the
precursor solution. From Table 1 and Fig. 3 it is witnessed that, with

Table 1
Structural data of spray deposited CFTS thin films.

Sample 2θ (°) Observed d (Å) Standard d (Å) hkl a= b (Å) C (Å) D (nm) TC (204)

TH10 27.56 3.233 3.157 112 5.63 10.74 18 0.63
31.78 2.813 2.725 200
32.66 2.739 2.684 004
47.83 1.900 1.913 204
55.34 1.659 1.641 312

TH11 27.26 3.268 3.157 112 5.63 10.35 23 2.01
31.77 2.814 2.725 200
32.79 2.729 2.684 004
47.90 1.897 1.913 204
55.28 1.660 1.641 312

TH12 27.24 3.271 3.157 112 5.45 10.75 29 2.11
31.96 2.798 2.725 200
32.63 2.742 2.684 004
47.91 1.897 1.913 204
55.86 1.644 1.641 312

TH13 27.34 3.259 3.157 112 5.62 10.62 35 2.47
31.80 2.811 2.725 200
32.79 2.729 2.684 004
47.88 1.898 1.913 204
55.22 1.662 1.641 312

TH14 27.15 3.281 3.157 112 5.60 10.48 30 2.11
31.92 2.801 2.725 200
32.56 2.747 2.684 004
47.96 1.895 1.913 204
55.50 1.654 1.641 312

Fig. 3. Variation of crystalline size and texture coefficient Tc(204) with
thiourea contents in the precursor solution for spray deposited CFTS thin films.

a) TH10

Fig. 4. SEM images of CFTS thin films spray deposited with various thiourea
contents in the precursor solution (a) TH10, (b) TH11, (c) TH12, (d) TH13, and
(e) TH14 respectively.
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rise in thiourea contents in the precursor solution, the texture coeffi-
cient reaches maximum for TH13 and decreases thereafter for TH14.

3.2. Surface morphological and compositional studies

Fig. 4 shows SEM pictures (10,000× magnifications) of CFTS thin
films spray deposited with various thiourea contents in the precursor
solution. It is evident that the beautiful hexagonal crystals of CFTS have
been deposited uniformly. The SEM image of the TH10 sample consist
of regular and irregular flakes of 1–2 μm, which change to thicker
hexagonal crystals with upsurge in thiourea contents in the precursor
solution. SEM image of TH14 consist of more packed hexagonal crystals
with uniform distribution of constituents over the entire area of the
film. The thiourea contents in the precursor solution play a significant
role in defining the surface properties including grain distribution and

porosity. Similar hexagonal plates type morphology was obtained by
Kevin and co-workers for Cu2FeSn(SxSe1−x)4 films [38]. It is resolved
that augmentation of thiourea in the precursor solution is useful for
refining surface morphology. The number of voids and larger hexagonal
crystals observed are beneficial for applications of CFTS thin films in
Photovoltaics [39].
Fig. 5 displays EDAX spectrum of CFTS films spray deposited with

various thiourea contents in the precursor solution. It indicates peaks
corresponding to Cu, Fe, Sn and S confirming CFTS phase. Table 2
depicts elemental analysis of CFTS thin films spray deposited with
various thiourea contents in the precursor solution. EDAX analysis
shows atomic ratio of Cu, Fe, Sn and S are closer to 2:1:1:4 designating

Fig. 4. (continued)

c) TH12

Fig. 4. (continued)

d) TH13

Fig. 4. (continued)

e) TH14

Fig. 4. (continued)
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nearly stoichiometric deposition of CFTS thin films for TH12 and TH13
samples.

3.3. Optical studies

Fig. 6 (a) depicts the absorbance spectra for CFTS thin films spray
deposited with various thiourea contents in the precursor solution. The
absorbance values were increased with the increase of thiourea con-
tents in the precursor solution in UV–Vis region. Similar aspect of ab-
sorbance spectra have been observed in the literature [40]. Obaid et al.
[41] have explained this behaviour by increasing number of atoms in
thicker films making more states available for the absorption of photon
energy. For TH13, we have a comparable absorbance, fine crystallinity,
morphology and purity phase. These results display the responsiveness
of CFTS thin films to absorption in the visible range. In crystalline
semiconductors, the absorption coefficient ‘α’ and incident photon en-
ergy hυ are related through Tauc's relation [42]. It is found that CFTS
thin films have high coefficient of absorption 104 cm−1 in the visible
region, indicating suitability of CFTS thin films for optoelectronic ap-
plications [43]. The plots of (αhυ)2 versus hυ for CFTS thin films spray
deposited with various thiourea contents in the precursor solution are
shown in Fig. 6(b). The linear nature of plot specifies direct allowed
type transition. It is witnessed that band gap widens with increase in
thiourea contents in the precursor solution. Table 3 shows the band gap
energies. The band gap energies are 1.54 eV, 1.61 eV, 1.66 eV, 1.71 eV
and 1.76 eV for TH10, TH11, TH12, TH13 and TH14 respectively. The
increase in band gap energies with thiourea contents in the precursor
solution is due to the stimulus of various factors including crystalline
size observed from XRD pattern, presence of impurities, carrier con-
centration, and deviation from stoichiometry [34]. Here, we consider
that the observed variation in Eg is due to the change in crystalline size
(Table 1). These values lie in the ideal range of band gap of absorber
material for thin film solar cells [44,45] and consequently CFTS is
useful in thin film solar cells. The variation of band gap energy with
thiourea contents in the precursor solution for spray deposited CFTS
thin films is shown in Fig. 6(c). Similar behaviour that is widening of
band gap with increase in thiourea contents has been reported by Zia
and colleagues for CdS-nanocrystalline thin films [46].

3.4. Electrical resistivity

The variation of log ρ versus inverse of absolute temperature for
CFTS thin films spray deposited with various thiourea contents in the
precursor solution is presented in Fig. 7. The reduction in electrical

resistivity with increase in temperature specifies typical semi-
conducting behaviour. From Fig. 7 it is observed that, as the thiourea
contents in the precursor solution upsurges the resistivity decreases for
CFTS thin films up to TH13 and increases further for TH14. The room
temperature electrical resistivity for TH10 is 0.646×105 Ωcm, which
decrease to 0.038× 105 Ωcm (TH13) with increase in thiourea contents
in the precursor solution and further increase to 0.070× 105 Ωcm for
TH14. The fall in the electrical resistivity with increase in thiourea
contents is accredited to an increased free carrier concentration due to
the incorporation of S2− ions. The lower resistivity at TH13 may be
associated to the better crystallinity which is related to the increase of
grain size and preferred orientation [47]. According to Ozta et al. [48],
the average grain size increases due to decrease of grain boundary
areas. For TH14 sample, the free carrier concentration saturates and the
mobility falls affecting the electrical resistivity. Similar behaviour was
reported by Nieto-Zepeda et al. [40] for CdS thin films.
The activation energies (Ea) are determined using the Arrhenius

equation [49]. The activation energies for low temperature zone were
0.09–0.12 eV and for high temperature zone were 0.31–0.37eV re-
spectively. Table 3 shows electrical resistivities and activation energies
for CFTS thin films spray deposited with various thiourea contents in
the precursor solution.

3.5. Thermoelectrical studies

The type of electrical conductivity possessed by the CFTS thin films
spray deposited with various thiourea contents in the precursor solution
is determined from thermoelectric power (TEP) measurement. Fig. 8
shows variation of thermo-emf with temperature difference (T) for
CFTS thin films spray deposited with various thiourea contents in the
precursor solution. The polarity of thermo-emf was negative towards
hot end with respect to cold end, which confirms the fact that CFTS thin
films spray deposited with various thiourea contents in the precursor
solution are of p-type.

4. Conclusions

In conclusion, the influence of thiourea contents in the precursor
solution on the properties of spray-deposited CFTS thin films was ex-
amined. XRD study showed tetragonal stannite crystal structure.
Moreover, the crystallinity of the CFTS thin films enhanced with the
augmentation of thiourea contents in the precursor solution. The large
hexagonal crystals observed through SEM are beneficial in photovoltaic
applications. EDAX study confirmed nearly stoichiometric deposition of

Fig. 5. EDAX patterns of CFTS thin films spray deposited with various thiourea contents in the precursor solution (a) TH10, (b) TH11, (c) TH12, (d) TH13, and (e)
TH14 respectively.
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Fig. 5. (continued)

Fig. 5. (continued)

Fig. 5. (continued)

Fig. 5. (continued)
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CFTS thin films. The band gap energies of the CFTS thin films are quite
close to the optimum value for a semiconductor material as an absorber
layer in thin film solar cells. The electrical resistivity measurements

indicated typical semiconducting behaviour. The thermoelectrical
analysis showed that CFTS thin films are p -type. It is concluded that
quaternary CFTS with proper contents of thiourea in the precursor so-
lution will show optimal performance for the photovoltaic applications.

Table 2
Elemental analysis of spray deposited of CFTS thin films.

Sample Atomic percentage in film by EDAX analysis (%)

Cu Fe Sn S

Ideal 25.00 12.50 12.50 50.00
TH10 25.94 12.42 12.34 49.30
TH11 25.51 12.25 12.43 49.81
TH12 25.17 12.04 12.32 50.47
TH13 24.73 12.31 12.33 50.63
TH14 24.51 11.83 11.65 52.01

Fig. 6. (a) Absorbance spectra for CFTS thin films spray deposited with various
thiourea contents in the precursor solution. 6(b) Variation of (αhυ) 2 versus hυ
for CFTS thin films spray deposited with various thiourea contents in the pre-
cursor solution. 6(c) Variation of band gap energy with thiourea contents in the
precursor solution for spray deposited CFTS thin films.

Fig. 6. (continued)

Fig. 6. (continued)

Table 3
Optical and electrical parameters of spray deposited of CFTS thin films.(R.T. –
room temperature; L.T. - low temperature; H.T. - high temperature).

Sample Band gap
(Eg)

Electrical resistivity (ρ) Activation energy (Ea)

(eV) R.T. (× 105 Ω
cm)

H.T. (× 101 Ω
cm)

(eV) H.T. (eV) L.T.

TH10 1.54 0.646 3.10 0.31 0.12
TH11 1.61 0.295 2.09 0.36 0.11
TH12 1.66 0.123 1.48 0.38 0.10
TH13 1.71 0.038 0.56 0.33 0.09
TH14 1.76 0.070 0.82 0.37 0.09

Fig. 7. Variation of logρ versus inverse of absolute temperature for CFTS thin
films spray deposited with various thiourea contents in the precursor solution.
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